Содержание
Электрический угорь (Источник: youtube) Рыба вида электрический угорь (Electrophorus electricus) — единственный представитель рода электрических угрей (Electrophorus). Встречается он в ряде приток среднего и нижнего течения Амазонки. Размер тела рыбы достигает 2,5 метра в длину, а вес — 20 кг. Питается электрический угорь рыбой, земноводными, если повезет — птицами или мелкими млекопитающими. Ученые изучают электрического угря десятки (если не сотни) лет, но только сейчас начали проясняться некоторые особенности строения его тела и ряда органов. Причем способность вырабатывать электричество — не единственная необычная черта электрического угря. К примеру, дышит он атмосферным воздухом. Это возможно благодаря большому количеству особого вида ткани ротовой полости, пронизанной кровеносными сосудами. Для дыхания угрю нужно каждые 15 минут всплывать к поверхности. Из воды кислород брать он не может, поскольку обитает он в очень мутных и мелких водоемах, где очень мало кислорода. Но, конечно, главная отличительная черта электрического угря — это его электрические органы. Они играют роль не только оружия для оглушения или убийства его жертв, которыми угорь питается. Разряд, генерируемый электрическими органами рыбы, может быть и слабым, до 10 В. Такие разряды угорь генерирует для электролокации. Дело в том, что у рыбы есть специальные «электрорецепторы», которые позволяют определять искажения электрического поля, вызываемые его собственным телом. Электролокация помогает угрю находить путь в мутной воде и находить спрятавшихся жертв. Угорь может дать сильный разряд электричества, и в это время затаившаяся рыба или земноводное начинает хаотично дергаться из-за судорог. Эти колебания хищник без труда обнаруживает и съедает жертву. Таким образом, эта рыба является одновременно и электрорецептивной и электрогенной.
Интересно, что разряды различной силы угорь генерирует при помощи электрических органов трех типов. Они занимают примерно 4/5 длины рыбы. Высокое напряжение вырабатывают органы Хантера и Мена, а небольшие токи для навигационных целей и коммуникационных целей генерирует орган Сакса. Главный орган и орган Хантера размещаются в нижней части тела угря, орган Сакса — в хвосте. Угри «общаются» между собой при помощи электрических сигналов на расстоянии до семи метров. Определенной серией электрических разрядов они могут привлекать к себе других особей своего вида.
Как электрический угорь генерирует электрический разряд?
Угри этого вида, как и ряд других «электрифицированных» рыб воспроизводят электричество тем же образом, что и нервы с мышцами в организмах других животных, только для этого используются электроциты — специализированные клетки. Задача выполняется при помощи фермента Na-K-АТФазы (кстати, этот же фермент очень важен и для моллюсков рода наутилус (лат. Nautilus)). Благодаря ферменту образуется ионный насос, выкачивающий из клетки ионы натрия, и закачивающий ионы калия. Калий выводится из клеток благодаря специальным белкам, входящих в состав мембраны. Они образуют своеобразный «калиевый канал», через который и выводятся ионы калия. Внутри клетки скапливаются положительно заряженные ионы, снаружи — отрицательно заряженные. Возникает электрический градиент. Разница потенциалов в результате достигает 70 мВ. В мембране той же клетки электрического органа угря есть и натриевые каналы, через которые ионы натрия могут снова попасть в клетку. В обычных условиях за 1 секунду насос выводит из клетки около 200 ионов натрия и одновременно переносит в клетку приблизительно 130 ионов калия. На квадратном микрометре мембраны может разместиться 100- 200 таких насосов. Обычно эти каналы закрыты, но в случае необходимости они открываются. Если это произошло, градиент химического потенциала приводит к тому, что ионы натрия снова поступают в клетки. Происходит общее изменение напряжения от -70 до +60 мВ, и клетка дает разряд в 130 мВ. Продолжительность процесса — всего 1 мс. Электрические клетки соединяются между собой нервными волокнами, соединение — последовательное. Электроциты составляют своеобразные столбики, которые соединяются уже параллельно. Общее напряжение генерируемого электрического сигнала достигает 650 В, сила тока — 1А. По некоторым данным, напряжение может достигать даже 1000 В, а сила тока — 2А.Электроциты (электрические клетки) угря под микроскопом После разряда снова действует ионный насос, и электрические органы угря заряжаются. По мнению некоторых ученых, насчитывается 7 типов ионных каналов мембраны клеток электроцитов. Расположение этих каналов и чередование типов каналов влияет на скорость производства электричества.
Разряд электрической батареи
По результатам исследования Кеннета Катания (Kenneth Catania) из Университета Вандербильта (США), угорь может использовать три типа разряда своего электрического органа. Первый, как и упоминалось выше — это серия низковольтных импульсов, которые служат для коммуникации и навигационных целей. Второй — последовательность из 2-3 высоковольтных импульсов продолжительностью несколько миллисекунд. Этот способ используется угрем при охоте на спрятавшуюся и затаившуюся жертву. Как только дано 2-3 разряда высокого напряжения, мышцы затаившейся жертвы начинают сокращаться, и угорь может без труда обнаружить потенциальную еду. Третий способ — ряд высоковольтных высокочастотных разрядов. Третий способ угорь использует при охоте, выдавая за секунду до 400 импульсов. Этот способ парализует практически любое животное небольшого и среднего размера (даже человека) на расстоянии до 3 метров.
Кто еще способен вырабатывать электрический ток?
Из рыб на это способны около 250 видов. У большинства электричество — лишь средство навигации, как, например, в случае слоника нильского (Gnathonemus petersii). Но электрический разряд чувствительной силы способны генерировать немногие рыбы. Это электрические скаты (ряд видов), электрический сом и некоторые другие. Электрический сом (Источник: Wikipedia) Джейсон Гэллент с коллегами провели секвенсирование генома ряда рыб с электрическими органами, и выяснили, что многие из изученных ими видов не являются родственниками. «Изобретение» природой электрических органов у рыб шло параллельно, но строение батарей очень схоже у всех. Всего ученые насчитали 6 независимых друг от друга эволюционных линий, приведших к появлению электрических органов. Пожалуй, электрический угорь является одним из видов рыб, которые используют этот орган наиболее искусно. Источник: animalpicturesociety.com
ЭЛЕКТРИЧЕСКИЕ РЫБЫ
Расскажите об электрических рыбах. Какой величины ток они вырабатывают?Электрический сом.Электрический угорь.Электрический скат.В. Кумушкин (г. Петрозаводск).Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы – преобразованные мышцы – располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус – в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей – до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание. В реках Экваториальной Африки обитает другая рыба – электрический сом. Размеры его поменьше – от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке. Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян. Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним. Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.
Читайте в любое время
Оформить подписку№3, 1998
Сильноэлектрические, такие как электрический угорь, генерируют мощные разряды. Напряжение разряда, производимого этим видом, достигает 500-600В, что достаточно для уничтожения других организмов. Такой разряд опасен для крупных морских обитателей и взрослого человека (Schmidt-Neilsen 2001)Слабоэлектрические виды производят слабые разряды, неспособные убить или даже привести в замешательство жертву. Такие сигналы используются не столько для поражения жертвы, сколько для ее обнаружения, либо для обнаружения различных объектов в среде обитания, а также как средство общения. Некоторые виды, относящиеся к третьей категории, вообще не способны генерировать разряды, однако они улавливают слабые электрические импульсы, наблюдающиеся во всех организмах, поскольку они регулируют мышечную функцию. Такая электрорецепция помогает им обнаруживать слабые электрические сигналы в организме животных, на которые они охотятся, и позволяет атаковать жертву с большей точностью (Schmidt-Neilsen 2001).
Сильноэлектрические |
Слабоэлектрические |
Воспринимающие |
Электрический угорь Электрический сом Электрический скат |
Рыба-нож Рыба-слон |
Акулы большинство скатов Коньки большинство сомов Веслонос |
У сильноэлектрических видов электрический орган имеет большие размеры и занимает значительную часть тела. Например, электрический орган угря занимает до 40% тела (Schmidt-Neilsen 2001).
Генерация электрических сигналов Рыбу, способную генерировать электрические сигналы, называют электрогенной (лаборатория Нельсона). Электрические органы состоят из электрических пластинок, собранных в столбики, которые образуют измененную мышечную массу, неспособную к сокращению. В этих органах происходит генерация электрического тока. Каждая из пластинок имеет с одной стороны гладкую поверхность, которая снабжена нервными окончаниями; противоположная же сторона имеет складчатую структуру. В состоянии покоя обе стороны имеют положительный заряд снаружи и отрицательный внутри, поэтому разность потенциалов между сторонами равна нулю. Для того, чтобы произвести импульс, мозг посылает электрический сигнал к верхней пластинке столбика, который деполяризует богатую нервными окончаниями поверхность пластинки. Благодаря этому, создается напряжение вокруг пластинки, которое деполяризует следующую пластинку, образуя электрический ток. Таким образом, волна деполяризации проходит через весь столбик. Собранные в столбики электропластинки работают подобно группе, состоящей из батарей. Заряды, производимые этими соединенными между собой батареями, поступают в окружающую водную среду и используются как средство общения, а также как средство обнаружения предметов и оружие против потенциальных хищников или добычи с целью их нейтрализации или умерщвления (Schmidt-Neilsen 2001).</p>
Помимо генерации электрических импульсов, рыба способна принимать и обрабатывать электрические сигналы, как собственные, так и поступающие от других особей. Способность рыб обнаруживать электрические сигналы называется электрорецепцией (лаборатория имени Нельсона). Сигналы обнаруживаются с помощью особых рецепторов, расположенных в кожном покрове электрической рыбы. Рецепторы могут быть двух типов: клубневидные и ампуллярные. Клубневидные рецепторы чувствительны к высокочастотным сигналам (частотой в несколько сотен Гц), и они свойственны электрической рыбе. Ампуллярные рецепторы присутствуют как в организмах электрических рыб, так и неэлектрических, и они воспринимают сигналы, имеющие гораздо более низкую частоту (Schmidt-Neilsen 2001)
Наиболее известной способностью электрической рыбы является способность атаковать противника с помощью электрических разрядов. Электрический угорь, электрический скат и электрический сом имеют электрические органы, которые могут генерировать разряды, способные парализовать или даже убить другие виды. Положительный полюс располагается в области головы, отрицательный – в области хвоста (Gerrow 2002).
Электрический угорь (Electrophorus electricus). Данный вид способен производить разряды напряжением около 600 В, хотя имеются и другие данные (Бэйли и соавт.) По сути, у электрического угря имеется не один, а целых три электрических органа. Один из них – орган Сэча – производит слабые импульсы, которые используются для обнаружения жертвы и ориентирования в пространстве. Основной электрический орган, а также «орган охотника», производят и накапливают электричество, создавая потенциал для сильных разрядов. Угорь атакует жертву, выпуская импульс в пространство, либо простым прикосновением, что является более эффективным способом. После выпуска разряда, угрю требуется почти час для того, чтобы «перезарядиться» и вновь достигнуть максимального заряда (Gerrow 2002)
Электрический угорь и три отдела электрического органа: орган Сэча, «орган охотника» и основной орган. Их расположение можно посмотреть на иллюстрации выше.
Электрический сом (Malapterurus electricus). Электрический сом атакует также как и электрический угорь – выпуская разряд в воду или, чаще всего, путем непосредственного прикосновения. В то же время, его разряды не такие мощные, как у угря (около 350 В), однако и такой мощности достаточно для нейтрализации и пленения других рыб. В первую очередь, сом генерирует основной разряд, за которым могут последовать несколько слабых разрядов (Gerrow 2002)
Электрический скат (Torpedo torpedo). Электрический скат является одним из наиболее известных видов скатов, однако это лишь один из 35 видов электрических скатов. Скаты используют необычный способ пленения жертвы благодаря своему потенциалу и уникальному строению тела. С помощью больших крыловидных плавников скат полностью поглощает добычу. Пленив таким образом жертву, скат генерирует мощный разряд (до 200 В) и убивает ее (Gerrow 2002)
Электрическая рыба использует электрические сигналы как средство общения, также как человек использует вербальные звуковые сигналы. С помощью электрического органа рыба производит импульс, который распространяется в водной среде и улавливается остальными ее обитателями, которые обрабатывают полученный сигнал. Значение импульса определяется его физическими характеристиками. Рыба непрерывно производит сигналы и тем самым обеспечивает непрерывный информационный поток. Сигнал несет информацию о том, к какому виду рыб принадлежит производящая его особь, а также о ее поле, степени готовности к размножению, социальном статусе и даже уровне агрессии. Хотя ученым удалось достигнуть определенного прогресса в распознавании различных сигналов, расшифровка «рыбьего языка» — очень трудная задача, и в этой области еще многое предстоит изучить. Все особи способны изменять характеристики сигналов в зависимости от цели их выпуска.
Электрическая рыба обладает способностью генерировать и принимать электрические сигналы в целях охоты. Все морские организмы испускают слабые электрические разряды, которые хорошо проводятся в окружающей водной среде. Электрическая рыба улавливает эти сигналы, исходящие от потенциальной жертвы. Рыба способна с точностью определять место, где находится жертва, отслеживать ее движения и даже выбирать наиболее эффективную манеру атаки (von der Emde 1999). Такая электролокационная охота имеет ряд преимуществ. Во-первых, она позволяет электрической рыбе выживать за счет видов, охота на которые без электролокации была бы невозможна, поскольку только электрические сигналы позволяют определять местонахождение скрывающейся жертвы. Также, эта способность дополняет остальные сенсорные функции и создает более полное представление об окружающей обстановке и доступности еды.
Хотя акулы и скаты являются наиболее известными «электролокационными» хищниками, этой способностью обладают также некоторые другие виды. Ниже приведены несколько примеров.
Веслонос (Polyodon spathula) – вид пресноводных рыб, питающийся зоопланктоном. Взрослые особи способны отфильтровывать еду, однако у молодых особей отсутствуют так называемые жаберные тычинки, поэтому они находят планктонных животных и нападают на них избирательно. Веслоносы живут в мутной воде, у них слабо развиты органы зрения. Поэтому, во время охоты на зоопланктон, они полагаются на электрические органы. (Wilkens et al.1997).
Американская кунья акула. Охота посредством электролокации в большой степени свойственна американской куньей акуле (Mustelus canis). Эта рыба питается более мелкими видами рыб, которые способны быстро передвигаться и обычно прячутся от хищников в донном песке. Способность к электролокации позволяет очень точно определить место, где прячется жертва, даже если она скрывается под слоем песка. Акула наносит удар с предельной точностью, однако, в случае неудачи при атаке, жертва быстро покидает место, и поймать ее уже не представляется возможным (Kalmijn 1982)
Синяя акула Доказано, что некоторые виды акул и скатов способны к электролокации. В ходе научных опытов с синими акулами (Prionace glauca) выяснилось, что акулы предпочитают атаковать добычу, имитируемую электрическими полями, нежели добычу, имитируемую запахами (Kalmijn 1982)
Примечание: при пассивной электролокации, электрическая рыба лишь обнаруживает электрические поля других организмов. При активной локации, рыба обнаруживает электрические поля, создавая при этом собственное поле. Объекты распознаются путем анализа создаваемых ими помех в электрическом поле.
Активная электролокация у электрической рыбы сходна с эхолокацией у летучих мышей. При активной электролокации, рыба посылает электрические сигналы в окружающую водную среду. Любой объект, находящийся в пределах электрического поля, оказывает влияние на сигнал, создавая помехи.
Рыба фиксирует помехи с помощью электрорецепторов, расположенных у поверхности кожи. На участки тела рыбы с электрорецепторами, улавливающими помехи в сигнале, «проецируется» электрическая картинка (von der Emde 1999 г.), обработав которую, рыба получает информацию об объекте.
С помощью активно электролокации, электрическая рыба собирает различную информацию. Она может определять расстояние до объектов, их размеры, форму и электропроводность. Это достигается путем обработки различных аспектов «электрической картинки», создаваемой объектом на теле рыбы, таких как размер, частота, расположение на теле и интенсивность. Рыба-слон (Gnathonemus petersii) обладает способностью различать живой и неживой материал (von der Emde 1999 г.)
Как слабоэлектрическая рыба-слон (Gnathonemus petersii) распознает объекты с помощью электрических сигналов.Электрические свойства. Объекты могут проводить электричество лучше, чем окружающая вода, либо хуже, либо вообще не обладать электропроводностью. Если объект имеет более высокую электропроводность, нежели вода, испускаемый рыбой сигнал будет притягиваться объектом и стремиться в его направлении. Когда рыба засекает этот сигнал, вокруг объекта возникает интенсивное электрическое поле, которое обычно окружено областью слабого поля; в результате, наблюдается эффект «профиля мексиканской шляпы». Объекты с меньшей электропроводностью, либо не обладающие ей, дают противоположный эффект (von der Emde 1999 г.).
Изменение характера электрического поля вблизи электропроводящих и неэлектропроводящих объектов
Рыба, ориентирующаяся в пространстве посредством электролокации, определяет форму объекта и его местонахождение исходя из его проекции на «электрической картинке». Место, где проецируется эта «картинка», зависит от того, где находится объект; таким образом, анализ расположения «картинки» на теле рыбы позволяет определить местоположение объекта относительно местоположения рыбы. По такому же принципу, форма «картинки» отражает форму объекта (von der Emde 1999 г.)
Определить расстояние до объекта сложнее, поскольку «картинка» не может прямо отобразить расстояние таким же образом как местоположение и форму объекта. Крупная «картинка» на теле рыбы в виде окружности может быть обусловлена как нахождением в непосредственной близости крупного сферического объекта, так и нахождением менее крупного объекта на значительном расстоянии.
«Электрические картинки», проецируемые объектами одинакового размера, расположенными на различном расстоянии. Более удаленный объект производит более крупную и в то же время более размытую картинку. Рисунок заимствован с Gerhard von der Emde (von der Emde 1999 г.)
Герхард Герхардт фон дер Эмде предлагает сравнительный анализ, объясняющий то, как по его мнению рыба-слон определяет расстояние с помощью электролокации: «Каждый объект создает проекцию, что-то вроде «электрической тени» на поверхности тела рыбы, которая увеличивается в размерах по мере удаления рыбы от объекта. Кроме того, края «тени» становятся размытыми, она становится менее яркой (von der Emde 1999). Таким образом, рыба определяет расстояние до объектов, сравнивая «картинки» по яркости и размытости. Другие ученые придерживаются иных гипотез (Budelli and Caputi 2000) Есть основания предполагать, что разные виды рыб определяют расстояние до объектов по-разному (von der Emde 1999 г.).
Примечание: при пассивной электролокации, электрическая рыба лишь обнаруживает электрические поля других организмов. При активной локации, рыба обнаруживает электрические поля и создает собственное поле. Объекты распознаются путем анализа создаваемых ими помех в электрическом поле. —— www.bio.davidson.edu
Здесь находится скрытый текст. Для его просмотра необходимо зарегистрироваться.
</tr></table>Раздел:Вопросы физиологии рыб
Другие значения этого слова:
- «Вольтанутая» рыба
- «Машет крыльями» в океане
- «Рыба» для автомобильного колеса
- «Рыбное» колесо.
- «Хозяин» русалочьего кошелька
- Автомобильная шина (разг.)
- Автомобильное колесо
- Большая плоская рыба
- Вагонная ось с насаженными на нее колесами
- Водоплавающий аккумулятор электричества
- Его кожа шла на рукоятки катан
- Есть на машине, а есть и рыба
- Какая рыба бьётся током?
- Колесо автомобиля
- Колесо грузовика
- Колесо или рыба
- Колесо, рыба, склон
- Комплект колесных пар паровоза, вагона
- Конструктивный элемент крыши
- Крупная хищная морская рыба подкласса акулообразных с широким плоским телом и длинным узким хвостом, иногда оканчивающимся шипом
- Крупная хищная морская рыба с плоским телом
- Ледяная горка
- Ледяная дорожка на горе
- Манта
- Манта как рыба
- Морская рыба с плоским телом
- Морская рыба, ведущая донный образ жизни
- Морская рыба-«электрошокер»
- Морская электрическая рыба
- Наклонная поверхность чего-нибудь; пологий спуск
- Наклонная подземная выработка, не имеющая непосредственного выхода на поверхность и предназначенная для спуска полезного ископаемого или пустых пород самотеком
- Не рыба, а прямо электростанция
- Плавающая «электростанция»
- Плавающий шокер
- Пластиножаберная рыба
- Платиножаберная рыба
- Плоская морская рыба
- Плоская рыба с зарядом
- Плоскотелая рыба
- Подводный электрик
- Подземная наклонная горная выработка; рыба
- Пологий спуск, бывает вагонный
- Представитель морского мира, имеющий крылья
- Рыба «под напряжением»
- Рыба манта
- Рыба с «шиноремонтным» названием
- Рыба с «электрошокером»
- Рыба с вольтами заряда
- Рыба с зарядом
- Рыба с крыльями
- Рыба с порцией заряда
- Рыба с порцией заряда.
- Рыба с электрозарядом
- Рыба с электроразрядом
- Рыба, бьющая током
- Рыба, колесо, откос
- Рыба, которая может ударить электрическим током
- Рыба, убивающая током
- Рыба-«аккумулятор»
- Рыба; наклонная плоскость
- Рыбаэлектрик
- Рыбий статус манты
- Самарский областной телеканал
- Синоним шина (авто)
- Склон крыши
- Хвостокол «морской дьявол»
- Хвостокол «морской дьявол».
- Хищная донная морская рыба
- Электрик подводного мира
- Электрик, живущий в море
- Электрическая морская рыба
- Электрическая рыба или шина грузовика
- Электрогенераторная рыба
- Электрорыба
Электрическая рыба-змея
Южноамериканский электрический угорь не имеет ничего общего с обычными угрями. Назван он так просто по внешнему сходству. Эта длинная, до 3 метров, змееобразная рыба весом до 40 кг способна генерировать разряд напряжением в 600 вольт! Тесное общение с такой рыбешкой может стоить жизни. Даже если сила тока не станет непосредственной причиной смерти, то к потере сознания приводит точно. А беспомощный человек может захлебнуться и утонуть.
Электрические угри живут в Амазонке, во многих неглубоких реках. Местное население, зная их способности, не заходит в воду. Электрическое поле, производимое рыбой-змеей, расходится в радиусе 3 метров. При этом угорь проявляет агрессию и может нападать без особой на то надобности. Наверное, он это делает с перепугу, так как основной рацион его составляет мелкая рыбешка. В этом плане живая «электроудочка» не знает никаких проблем: выпустил зарядик, и завтрак готов, обед и ужин заодно.
Электрические органы у разных групп рыб регулируются сходными генами
Электрический угорь имеет самые специализированные электрические органы, они протягиваются почти по всей длине его тела и могут генерировать разряд примерно в 600 вольт. Теперь стала известна генетическая база их работы. Фото с сайта realmonstrosities.com
Читайте также: У каких птиц есть молоко. Какая птица кормит птенцов кровью? Дают ли птицы молоко
Биологи расшифровали генетическую базу, на которой строятся электрические органы рыб. Электрический орган — это очень сложное устройство, но оно, тем не менее, появлялось в ходе эволюции параллельно несколько раз, превращая мышцы в биобатареи. Удивительно, но наборы генов, которые участвовали в этом эволюционном фокусе, оказались сходными во всех изученных группах рыб.
Сейчас известно 6 групп рыб, которые приобрели специальные электрические органы (об истории изучения электрических органов рыб, их строении и функциях см. статью «Электрическое чувство»). К ним относятся электрические сомы, электрические угри вместе со всеми своими родичами гимнотами, некоторые представители сомов, ромботелые и электрические скаты, слонорылы (мормириды, см. Mormyridae) и звездочеты — всего около 500 видов рыб.
Устройство электрических органов везде следует единой схеме. Это собранные аккуратными стопками клетки электроциты. К каждому электроциту подводится нервное окончание, всегда с одной стороны. Нервное окончание переходит в широкий синапс, где возбуждение передается на изрядную часть поверхности клетки. Так что клетка оказывается заряженной с одной своей стороны. На другой стороне пластинки электроцита сконцентрированы ионные каналы, так что там, на противоположной от синапса стороне, накачиваются заряженные частицы. Пластинки электроцитов упорядочены по своим полюсам: синапсы с одной стороны, а поверхность с многочисленными ионными каналами — с другой. Получается батарея соединенных клеток с упорядоченной полюсностью, поэтому их токи суммируются. В результате при прохождении нервного сигнала электрический орган выдает разряд определенной величины, которая определяется видоспецифическими свойствами и непосредственными жизненными задачами владельца батареи.
Бесспорно установлено, что электроциты получились из мышечных клеток, которые увеличились в размерах, упорядочились по взаимному расположению и иннервации и избавились от необходимости сокращаться, утеряв ту или иную часть белкового сократительного аппарата. Однако у разных рыб электрические органы настолько разные, настолько различаются по особенностям размещения на теле и строению клеток, по специфике иннервации, что об их общем предке и речи нет. Оно и понятно: электрический орган можно соорудить из любой скелетной мышцы там, где это соответствует рыбьей надобности. Так что электрические органы — это прекрасный пример параллельного появления сложного органа. Замечу, кстати, к вопросу о параллельной эволюции, что электрические органы имелись, возможно, и у некоторых палеозойских ископаемых рыб и стегоцефалов; возможно, они есть и у современных полиптерусов.
Параллельное появление электрических органов в разных группах рыб. Розовым цветом
показаны линии, где электрические органы приобретены частью представителей, акрасным — где все представители обзавелись ими. Схема из обсуждаемой статьи вScience Как электрические органы разных рыб организованы на генетическом уровне и как шло их параллельное формирование, разобрались ученые под руководством профессора М. Сассмана (Michael Sussman) из Висконсинского университета.
Для этого специалисты отсеквенировали геном электрического угря (Electrophorus electricus
), а затем собрали данные о генах, которые экспрессируются в его электрических органах, почках, сердце, головном и спинном мозге, мышцах, — или, применяя термины, о транскриптомах различных тканей. В этих тканях, как выяснилось, работает около 29 тысяч генов, из них 22 тысячи относятся к белок-кодирующим генам.
Из этого общего набора выделили те гены, которые особенно интенсивно экспрессируются в электрических органах или, наоборот, их присутствие там совершенно незаметно по сравнению со скелетными мышцами или сердцем (это тоже мышечная ткань). Всего таких генов набралось 397. Для сравнения получили соответствующие транскриптомы других электрических рыб: двух гимнотов (Sternopygus macrurus
иEigenmannia virescens ), слонорылаBrienomyrus brachyistius и электрического сома (Malapterurus electricus ). По данным транскриптомов реконструировали наборы генов и выбрали те, которые были признаны «электрическими» для угря. Далее осталось аккуратно сравнить уровень их экспрессии и составить функциональный спектр полученной выборки генов. В первую очередь обращалось внимание на гены, вовлеченные в регуляцию сокращения мышечных волокон, плотности ионных каналов, структуры синапсов и контролирующие размеры клетки. То есть всё то, что отличает в целом электроцит от мышечной клетки.
Оказалось, что в электрических органах на первый план вышли несколько определенных генов, сходных у всех исследованных видов; для этих генов единообразно изменился уровень экспрессии (повысился или понизился). Действительно, удивляет, что при резких различиях и самих электрических органов, и электроцитов всё же нашлись общие изменения, контролируемые общими генами — и те, и другие в достаточном числе. Эти гены вовлечены во все те метаболические пути, которые обслуживают параллельно возникшие свойства: суммацию возбуждения, дипольную сущность электроцитов, их крупные размеры и потерю сократительной способности.
Экспрессия генов, которые обслуживают специфические свойства электрических органов у пяти видов рыб. Сверху вниз
: ядерные факторы транскрипции (Nuclear); гены, регулирующие возбуждение клетки (Excitation); гены, регулирующие размер клетки (Cell Size); гены, вовлеченные в регуляцию сокращения мышечных волокон (Contraction); гены, кодирующие белковый сократительный аппарат (Insulation). Для электрического угря приведены данные по экспрессии в трех типах электрических органов — главном (Main), органе Сакса (Sachs’) и органе Хантера (Hunter’s). Очевидно, что резкое увеличение и снижение экспрессии единообразно у исследованных видов. Рис. из обсуждаемой статьи вScience Получается, что конвергентно возникшие сложные органы формировались за счет изменений в регуляции одних и тех же генов. Видимо, для построения сложной схемы, такой, как электрический орган, природа пользуется одними и теми же инструментами, в данном случае — генами. Мы уже обсуждали конвергентное появление сложных признаков за счет сходных генов на примере эхолокации у летучих мышей и дельфинов (см. Конвергентная морфология как следствие конвергенции генов, «Элементы», 15.10.2013). В случае с эхолокацией тоже обнаружилось, что у исключительно далеких групп для организации нового сложного признака изменились одни и те же гены.
Читайте также: Ксения Стриж – о радио всех времен, смене форматов и возвращении в театр
Так мало помалу проявляются отдельные кусочки мозаики под названием «молекулярные правила эволюции». Вероятно, следует учитывать, что возможных путей для изменений не так уж много, поскольку число генов, обслуживающих тот или иной признак, не бесконечно; тем более ограничено число возможных, не смертельных, изменений и комбинаций.
Источник:
Jason R. Gallant, Lindsay L. Traeger, Jeremy D. Volkening, Howell Moffett, Po-Hao Chen, Carl D. Novina, George N. Phillips Jr., Rene Anand, Gregg B. Wells, Matthew Pinch, Robert Güth, Graciela A. Unguez, James S. Albert, Harold H. Zakon, Manoj P. Samanta, Michael R. Sussman. Genomic basis for the convergent evolution of electric organs //Science . 2014. V. 344. P. 1522–1525.
См. также:
Ю. А. Лабас, В. Г. Черданцев, Е. Н. Глухова. Цитоэмбриологические аспекты эволюции электрических органов рыб //Журнал общей биологии . 2000. Т. 61. № 6. С. 617–637. Интересная статья по данной теме, где объясняется, почему электрические органы имеются только у рыб и многое другое.
Елена Наймарк
Нильский дракончик
Еще один африканский электрический представитель царства рыб — нильский гимнарх, или аба-аба. Его изображали на своих фресках фараоны. Обитает он не только в Ниле, но в водах Конго, Нигера и некоторых озер. Это красивая «стильная» рыбка с длинным изящным телом, длиной от сорока сантиметров до полутора метров. Нижние плавники отсутствуют, зато один верхний тянется вдоль всего тела. Под ним и находится «батарейка», которая производит электромагнитные волны силой 25 В практически постоянно. Голова гимнарха несет положительный заряд, а хвост — отрицательный.
Свои электрические способности гимнархи используют не только для поиска пищи и локации, но и в брачных играх. Кстати, самцы гимнархов просто потрясающе фанатичные отцы. Они не отходят от кладки икринок. И стоит только приблизится кому-то к детям, папа так окатит нарушителя электрошокером, что мало не покажется.
Гимнархи очень симпатичны — их вытянутая, похожая на дракончика, мордочка и хитрые глазки снискали любовь среди аквариумистов. Правда, симпатяга довольно агрессивен. Из нескольких мальков, поселенных в аквариум, в живых останется только один.
Как вырабатывают электричество электрические угри
- Как вырабатывают электричество электрические угри
- Как снять электричество с волос
- Почему люди бьются током
Электрический угорь накапливает значительные заряды электричества, разряды которого использует для охоты и обороны от хищников. Но угорь — не единственная рыба, производящая электричество.
Электрический сом
В мутных водоемах тропической и субтропической Африки живут электрические рыбы – сомы. Это довольно крупные особи, от 1 до 3 м в длину. Сомы не любят быстрых течений, живут в уютных гнездах на дне водоемов. Электрические органы, которые расположены по бокам рыбы, способны производить напряжение в 350 В.
Малоподвижный и апатичный сом не любит уплывать далеко от своего жилища, выползает из него для охоты по ночам, но также и непрошеных гостей не любит. Встречает он их легкими электрическими волнами, ими же и добывает себе добычу. Разряды помогают сому не только охотиться, но и ориентироваться в темной мутной воде. Мясо электрического сома считается деликатесом у местного африканского населения.
Используемые источники:
- https://habr.com/ru/post/396959/
- https://m.nkj.ru/archive/articles/10425/
- https://aquavitro.org/2014/04/07/elektricheskie-ryby/
- https://100zaitsev.ru/zoologiya/kakaya-ryba-elektricheskaya.html